Table of Contents
geopandas的组成
geopandas数据结构
- GeoDataFrame – 表
- Series – 列、行
geopandas要素
- index – 行维度上的标记
- column – 列上的标记
数据的操作包括几部分
增
读增(数据的还原)
fp = "C:\\Users\\tomye\\Documents\\山东.shp"
data = gpd.read_file(fp,encoding='utf-8')
data.head(2)
pfp=r'C:\Users\tomye\Documents\山东旅游景点.geojson'
points=gpd.read_file(pfp,encoding='utf-8')
points.head(2)
新增
newdata = gpd.GeoDataFrame()
coordinates = [(24.950899, 60.169158), (24.953492, 60.169158), (24.953510, 60.170104), (24.950958, 60.169990)]
poly = Polygon(coordinates)
newdata.loc[0, 'geometry'] = poly
newdata.loc[0, 'Location'] = 'Senaatintori'
newdata.crs = from_epsg(4326)
newdata
复制增加
data_copy=data.copy()
添加一列
data['area']=data.area
s1 = pd.Series(pd.date_range('20130102', periods=405),index=data.index)
data['date']=s1
表的叠加
newdata = gpd.GeoDataFrame(pd.concat( [newdata,newdata1], ignore_index=True))
表的对接
查(最重要)
基本信息
data.index
data.columns
行切片查询
data.head()
data.tail()
data.loc[1:3]
data.loc[:3]
grouped= data.groupby('PAC')
for key,values in grouped:
v=values
列切片
data['PAC']
data.loc[:,['PAC','NAME','geometry']]
按条件查询
data[data['PAC']==370521.0]
data[(data['PAC']==370521.0) & (data['Shape_Leng']>0.024149)]
data[data['NAME'].isin(['垦利县','市中区'])]
查找单元格
data.at[74,'PAC']
data.iat[74,1]
查找统计结果
data['PAC'].max()
data['PAC'].min()
data['PAC'].mean()
排序
data.sort_index(axis=0, ascending=False)
data.sort_values(by='Shape_Area', ascending=False)
删
改
按条件改
index=data.loc[data['NAME']=='垦利县'].index
data.loc[index,'NAME']='东营市垦利县'
修改列名
data.rename(columns={'PAC':'省际标识'})
根据列删除为空的行
points.dropna(subset=['geometry'],inplace=True)
Post Views: 83